A Dynamic Multiscale Phase-field Model for Structural Transformations and Twinning

نویسندگان

  • Vaibhav Agrawal
  • Kaushik Dayal
چکیده

The motion of microstructural interfaces is important in modeling materials that undergo twinning and structural phase transformations. Continuum models fall into two classes: sharp-interface models, where interfaces are singular surfaces; and regularized-interface models, such as phase-field models, where interfaces are smeared out. The former are challenging for numerical solutions because the interfaces need to be explicitly tracked, but have the advantage that the kinetics of existing interfaces and the nucleation of new interfaces can be transparently and precisely prescribed. In contrast, phase-field models do not require explicit tracking of interfaces, thereby enabling relatively simple numerical calculations, but the specification of kinetics and nucleation is both restrictive and extremely opaque. This prevents straightforward calibration of phase-field models to experiment and/or molecular simulations, and breaks the multiscale hierarchy of passing information from atomic to continuum. Consequently, phase-field models cannot be confidently used in dynamic settings. This shortcoming of existing phase-field models motivates our work. We present the formulation of a phase-field model – i.e., a model with regularized interfaces that do not require explicit numerical tracking – that allows for easy and transparent prescription of complex interface kinetics and nucleation. The key ingredients are a re-parametrization of the energy density to clearly separate nucleation from kinetics; and an evolution law that comes from a conservation statement for interfaces. This enables clear prescription of nucleation through the source term of the conservation law and of kinetics through an interfacial velocity field. A formal limit of the kinetic driving force recovers the classical continuum sharp-interface driving force, providing confidence in both the re-parametrized energy and the evolution statement. We present a number of numerical calculations that characterize our formulation in one and two dimensions. These calculations illustrate: (i) stick-slip, linear, and quadratic kinetics; (ii) highlysensitive rate-dependent nucleation; (iii) independent prescription of the forward and backward nucleation stresses without changing the energy landscape; (iv) the competition between nucleation ∗[email protected][email protected]

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

A Dynamic Multiscale Phase-field Model for Structural Transformations and Twinning: Regularized Interfaces with Transparent Prescription of Complex Kinetics and Nucleation

The motion of microstructural interfaces is important in modeling materials that undergo twinning and structural phase transformations. Continuum models fall into two classes: sharp-interface models, where interfaces are singular surfaces; and regularized-interface models, such as phase-field models, where interfaces are smeared out. The former are challenging for numerical solutions because th...

متن کامل

Investigation of Vacancy Defects on the Young’s Modulus of Carbon Nanotube Reinforced Composites in Axial Direction via a Multiscale Modeling Approach

In this article, the influence of various vacancy defects on the Young’s modulus of carbon nanotube (CNT) - reinforcement polymer composite in the axial direction is investigated via a structural model in ANSYS software. Their high strength can be affected by the presence of defects in the nanotubes used as reinforcements in practical nanocomposites. Molecular structural mechanics (MSM)/finite ...

متن کامل

Multiple twinning and variant-variant transformations in martensite: Phase-field approach

A phase-field theory of transformations between martensitic variants and multiple twinning within martensitic variants is developed for large strains and lattice rotations. It resolves numerous existing problems. The model, which involves just one order parameter for the description of each variant-variant transformation and multiple twinnings within each martensitic variant, allows one to pres...

متن کامل

Multiscale Multiphysic Mixed Geomechanical Model for Deformable Porous Media Considering the Effects of Surrounding Area

Porous media of hydro-carbon reservoirs is influenced from several scales. Effective scales of fluid phases and solid phase are different. To reduce calculations in simulating porous hydro-carbon reservoirs, each physical phenomenon should be assisted in the range of its effective scale. The simulating with fine scale in a multiple physics hydro-carbon media exceeds the current computational ca...

متن کامل

Dynamics of Macro–Nano Mechanical Systems; Fixed Interfacial Multiscale Method

The continuum based approaches don’t provide the correct physics in atomic scales. On the other hand, the molecular based approaches are limited by the length and simulated process time. As an attractive alternative, this paper proposes the Fixed Interfacial Multiscale Method (FIMM) for computationally and mathematically efficient modeling of solid structures. The approach is applicable to mult...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2014